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Abstract
A three-dimensional mesoscopic method is developed for predicting the
effective thermal conductivity of multiphase random porous media. The
energy transport equations are solved by a lattice Boltzmann method for
multiphase conjugate heat transfer through a porous structure whose
morphology is characterized by a random generation-growth algorithm. Our
numerical results show that the cell number in the third dimension
influences the resulting effective thermal conductivity of three-dimensional
porous media. The predicted effective thermal conductivity varies with the
cell number in the third dimension following an exponential relationship,
and it requires in the examples at least 10 cells along the third dimension
before the predictions stabilize. Comparisons with the experimental data
show that the effective thermal conductivities measured by the hot-probe
and hot-wire techniques agree well with the predicted results by the
two-dimensional model, whereas those measured by the transient
comparative method agree more with the three-dimensional
predictions.

1. Introduction

For better understanding of transport mechanism in soils,
rocks and other engineering materials, the effective thermal
conductivity of porous media has been studied for well
over one hundred years in both theory and experiment
[1–3]. Recently, it has gained more attention due to its new
applications in functional material design, MEMS devices
cooling techniques, textile and food engineering and even
human medical technologies [4–7].

In experiments, the hot-wire and hot-probe are the
most popular techniques for local thermal conductivity
measurement for soft matter, which are based on a linear
heat source and an axis-symmetric measurement system [8,9].
They have been used for measuring the thermal conductivities
of soils, foods and even liquids [10–17]. In high porosity
solid structure cases, however, the parallel plate and hot

plate have been more frequently used [18–22]. Recently,
Carson et al [23] developed a ‘comparative method’ to
measure the thermal conductivity in highly non-homogeneous
cases.

To model the effective thermal conductivity of porous
media, the semi-empirical theoretical models often used are
generally based on network combinations of the series and
parallel models [24–29]. Wang et al [30] also presented
simple combinatory rules for complex materials. Owing
to the rapid developments in computer and computational
techniques in the past twenty years, pure numerical modelling
methods have been used to predict the thermal conductivity
of porous media [31–43]. Thovert et al [31] calculated the
thermal conductivity of random media and regular fractals
by solving the Laplace equation using the finite-difference
method. Bakker [32] determined the thermal conductivity of
porous media through the finite element method. However,
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the traditional partial difference equation (PDE) solvers often
impose huge or even prohibitive computational cost when
the porous structure is too complicated, especially when the
fluid–solid conjugate problem is considered. Therefore the
stochastic–statistic methods for transport in porous media
have gained increasing attention in recent years [33, 34].
Shoshany et al [35] and Barta and Dieska [36] modelled the
thermal conductivity of porous materials using the Monte Carlo
methods. Zhang et al [37, 38] developed a randomly mixed
model (RMM) to predict the effective thermal conductivity of
moist porous media. However, Qian et al [39] used a two-
dimensional five-speed (D2Q5) lattice Boltzmann model to
simulate the effective thermal conductivity of porous materials
with no fluid–solid conjugate heat transfer considered. Wang
et al [40] built up a full stochastic–statistic approach for
the effective thermal conductivity predictions of random
porous media, which include a two-dimensional nine-speed
(D2Q9) lattice Boltzmann method (LBM) for fluid–solid
conjugate heat transfer [41] and a random generation-growth
method to generate morphology of multiphase random porous
media. Wang’s predictions agreed rather well with a series of
experimental data.

Based on the previous work, this paper will develop
a three-dimensional stochastic–statistic based method for
predicting the effective thermal conductivity of porous media.
The results will be compared with the two-dimensional
predictions and the existing experimental data. The three-
dimensional effect of the effective thermal conductivity of
porous media will therefore be discussed.

2. Numerical method

2.1. Lattice Boltzmann algorithm

The LBM is intrinsically a mesoscopic approach based on
the evolution of statistical distribution on lattices and has
achieved considerable success in simulating fluid flows and
associated transport phenomena [42–44]. The most important
advantages of the LBM are the easy implementation of multiple
intercomponent interactions and complex geometry boundary
conditions [45, 46]. Conservations can hold automatically in
general without additional computational efforts [47,48]. The
thermal models for the two-dimensional and three-dimensional
LBM have been developed recently [49–51]. Here we have
adapted our previous lattice Boltzmann algorithm for fluid–
solid conjugate heat transfer [41] into the three-dimensional
mode.

For the pure thermal conduction in porous media, the
temperature evolution equation in either the fluid or the solid
phase can be generally given as

gα(r + eαδt , t + δt ) − gα(r, t) = − 1

τg

[gα(r, t) − geq
α (r, t)],

(1)

where g
eq
α is the equilibrium distribution in each direction, eα

the discrete lattice velocity and τg the dimensionless relaxation

time for each phase. For a D2Q9 model, they are
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geq
α =




0 α = 0
1

9
T α = 1 to 6

1

24
T α = 7 to 14,

(5)

eα =




(0, 0, 0) α=0

(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c α=1 to 6

(±1, ±1, ±1)c α=7 to 14,

(6)

and

τg = 9

5

k

c2δt

+ 0.5, (7)

where δt is the time step, k the thermal conductivity for each
phase and c a pseudo sound speed whose value can take any
positive value theoretically only to insure the τg value within
(0.5, 2) [41, 46]. The temperature and the heat flux can then
be calculated according to [52]

T =
∑

α

gα, (8)

q =
(∑

α

eαgα

)
τg − 0.5

τg

. (9)

After the temperature field is solved, the effective thermal
conductivity, keff , can be determined:

keff = L · ∫ q · dA

�T
∫

dA
, (10)

where q is the steady heat flux through the media cross
section area dA between the temperature difference �T with
a distance L.

2.2. Boundary conditions

For the isothermal boundary treatment, we follow the bounce-
back rule of the non-equilibrium distribution proposed by Zou
and He [53]:

gα − geq
α = −(gβ − g

eq
β ), (11)

where α and β represent opposite directions, and the
equilibrium distribution can be calculated based on the local
boundary temperature.
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Table 1. Predictions of effective thermal conductivities for two kinds of structures.

Parallel mode Series mode

Results c(m s−1) Predictions (W m−1K−1) Deviations (%) Predictions (W m−1K−1) Deviations (%)

100 1.262 674 91 0.0139 0.049 504 95 0.0000
1 000 1.262 448 15 −0.0058 0.049 504 95 0.0000
10 000 1.262 566 10 0.0052 0.049 504 95 0.0000

where k1 = 2.5 W m−1 K−1, k2 = 0.025 W m−1 K−1.

For the insulated boundary, we tried the Neumann
boundary treatment [41, 52] and let the boundary temperature
gradient be equal to zero. To prevent heat flux from leaking
along the insulate surfaces, a specular reflection treatment is
implemented. It has been proved that the current boundary
treatments have the second order accuracies [53].

3. Results and discussion

The proposed method will be used to predict the effective
thermal conductivity of the three-dimensional porous media
in this section. First of all, the method is validated by
comparing with the theoretical solutions for two simple
structures. The three-dimensional predictions with proper
simulation parameters will then be compared against the two-
dimensional cases and experimental data so that the third
dimension influence on the effective thermal conductivity of
porous media is discussed.

3.1. Benchmarks

To validate the algorithm and the codes, the numerical
predictions are compared with the theoretical solutions
for two hypothetical structure cases: parallel mode and
series mode. The structures are formed in two phases
and the thermal conductivities are 2.5 W m−1K−1 and
0.025 W m−1K−1, respectively. The fractions of the two
phases are equal so that the theoretical solution of the effective
thermal conductivity is 1.2625 W m−1K−1 for parallel mode
and 0.049 504 95 W m−1K−1 for series mode. Table 1 lists
our predictions of the effective thermal conductivities and the
deviations from the simple theoretical solutions as functions
of the pseudo sound speed c. It is clear that our predictions
agree perfectly well with the theoretical solutions with the
maximum deviation less than 0.02% when c changes from 100
to 10000 m s−1. The results validate the proposed algorithm
and the boundary implements. A larger c leads to a more
accurate prediction yet requires a higher computational cost.
In the following simulations, c is set to 1000 m s−1 unless
specified otherwise.

3.2. Randomly generated porous media

To bring the random characteristics of natural porous media
into modelling, the random effect has to be introduced during
the generation of porous media structure. The random location
of obstacles is the most popular method to construct an artificial
porous medium [35–38]. Coveney et al [54] proposed a
pore growth-with-time model to control the pores size and
connectivity. Wang et al [40] presented a full description of
the structure generation method, termed the quartet structure

Table 2. Predicted effective thermal conductivities for different core
distribution probabilities.

cd keff (W m−1K−1) keff/keff,cd=0.3

0.001 1.501 0.9311
0.01 1.519 0.9423
0.1 1.592 0.9876
0.3 1.612 1.0000

where ks = 2.50 W m−1 K−1, kg = 0.025
W m−1 K−1.

generation set (QSGS), for generating micro-morphology of
random porous media based on the cluster growth theory
[55]. The QSGS method has been used in two-dimensional
simulations and has shown good agreement with a series of
experimental data. Here we implement the QSGS method in
three-dimensional isotropic systems.

To distinguish the present QSGS method from the
previous random obstacle location method [38], the effect
of core distribution probability, cd, on the effective thermal
conductivity is studied. Consider the gas–solid porous media
at a porosity ε = 0.7. The solid cores grow by the QSGS
method with a fraction of 0.3. When cd equals 0.3, the QSGS
method will become equivalent to the random obstacle location
method. Once cd is smaller than 0.3, each solid core will have
a three-dimensional structure, not just a cube.

Table 2 shows our predicted effective thermal conduc-
tivities versus the core distribution probability, cd, at ks =
2.50 W m−1K−1 and kg = 0.025 W m−1K−1. The results re-
veal that the effective thermal conductivity of porous media de-
creases with the core distribution probability. When cd changes
from 0.3 to 0.01, the effective thermal conductivity decreases
by over 5%. It is indicated that the influence of porous struc-
tures on the effective thermal conductivity should be taken into
consideration if the pore size is not negligible.

3.3. Influence of the third dimension

The three-dimensional transport phenomena often differ from
the two-dimensional cases under the same boundary conditions
due to the different surface-to-volume ratio [56,57]. Wang and
Li [58] compared the gas flows in two- and three-dimensional
microchannels and found an exponential relationship between
the velocities in a three-dimensional channel and in a two-
dimensional channel. Here we perform the effective thermal
conductivity predictions in both two- and three-dimensions
under the same boundary conditions and with the same
simulation parameters. We maintain the identical length and
height of the 2D cell domains but add the cell number along
the third dimension to set up a 3D case. Comparisons between
the three-dimensional results for different cell numbers in the
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Figure 1. The predicted effective thermal conductivities of
three-dimensional two-phase porous media versus the cell numbers
Ny in the third direction. The simulation parameters are
ks = 0.60 W m−1 K−1, kg = 0.035 W m−1 K−1, ε = 0.3 and
cd = 0.01. The fitted parameters are A = 0.384, C1 = 0.30 and
C2 = 0.35.

third dimension and the two-dimensional results will indicate
the three-dimensional effects.

The two-phase porous media are generated at ε =
0.3, cd = 0.01 and the simulation parameters are ks =
0.60 W m−1K−1 and kg = 0.035 W m−1K−1. The grids for
the two-dimensional predictions are set as N2 × N2, where
N2 = 200, and for the three-dimensional predictions as
N3×Ny ×N3, where a typical value of N3 is normally 200. We
have changed the values of N3 from 60 to 300, and the results
remain almost the same. For the current grid arrangements, the
discretization errors are smaller than 3% caused by the random
structures.

Figure 1 shows the impact of the third dimension cell
numbers Ny on the effective thermal conductivity predictions.
The two-dimensional result is plotted in the same figure, which
can be viewed as a special case of the three-dimensional
result at Ny = 1. The three-dimensional effective thermal
conductivity increases sharply with the third dimension cell
number when Ny < 10 and then levels off for larger Ny .
Similar to [58], a similar exponential relationship is obtained
by fitting the predictions as shown in figure 1. For the
specific simulation case, the fitted parameters are A = 0.384,
C1 = 0.30, C2 = 0.35.

The results indicate the following: (i) the predicted
effective thermal conductivities are always smaller at two-
dimensional cases than at three-dimensional ones under the
same boundary conditions and simulation parameters, which
is consistent with the previous work of Kirkpatrick based on
the effective medium theory [59], (ii) the cell number in the
third dimension has to be at least over a certain number (=10
in this case) to stabilize the influence of the third dimension
and (iii) once the cell number in the third dimension is large
enough, the predicted effective thermal conductivity becomes
independent of the cell number Ny .

Furthermore, the ratios of the predicted effective thermal
conductivities between 2D and 3D are also related to the
porosities. Figure 2 depicts the relationship by using the

Figure 2. The ratios of two-dimensional to three-dimensional
predicted effective thermal conductivities for different porosities of
three-dimensional two-phase porous media. The simulation
parameters are ks = 0.60 W m−1 K−1, kg = 0.035 W m−1 K−1 and
cd = 0.01.

simulation parameters as ks = 0.60 W m−1K−1, kg =
0.035 W m−1K−1 and cd = 0.01. The results indicate again
that the two-dimensional predictions are always smaller than
the three-dimensional ones unless the porosity ε equals zero or
unity. The ratio does not vary with the porosity monotonically
and reaches a minimum value, in this case, smaller than 0.6
when the porosity ε ≈ 0.7.

3.4. Comparisons with experimental data

The present two- and three-dimensional predictions are also
compared with the existing experimental data. As reviewed in
the introduction, the hot-probe is a convenient measurement
for the effective thermal conductivity in soft matter; however
since it is based on a line heat source and axial symmetric
assumption, this method is generally regarded as a two-
dimensional technique [60]. Wang et al [40] have shown
that a series of experimental data measured by the hot-probe
or hot-wire methods agree well with their two-dimensional
predictions. Here we compare the measured effective thermal
conductivities of moist sands under frozen and unfrozen states
[11, 12] with the corresponding predictions in figure 3. The
parameters in both two- and three-dimensional calculations
are ε = 0.52, ks = 2.85 W m−1K−1, kw = 0.5924 W m−1K−1,
kg = 0.0249 W m−1K−1 and kice = 2.38 W m−1K−1 adopted
from [61]. The two-dimensional simulations use a 200 × 200
grid, and the three-dimensional cases use a 60 × 60 × 60
grid for acceptable computational costs. The results show that
the experiment data are consistent with the two-dimensional
predictions and yet deviate much from the three-dimensional
predictions.

We also notice that Zhang’s recent three-dimensional
random simulations also exhibit good agreement with the
experimental data used [38]. Based on the analysis above,
the reason for such agreement might be as follows: (i) the
cell number in the third dimension is not large enough so
that the three-dimensional simulations are actually close to the
two-dimensional ones and (ii) the RMM did not consider the
influence of the pore structure, which was actually a special
case at cd = ε.

Carson et al [23] developed a transient comparative
method to measure the effective thermal conductivity of a
pseudo-porous food analogue. There was no two-dimensional
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Figure 3. Comparisons between our numerical predictions with the
experimental data of Singh et al [12] measured by the hot-probe
method.

Figure 4. Comparisons between our numerical predictions and the
experimental data of Carson et al [23] measured by a transient
comparative method.

assumption in this measurement technique. Figure 4 shows
the comparison of experimental data with the respective
two-dimensional and three-dimensional predictions using the
present models. The used parameters are cd = 0.01, ks =
0.60 W m−1K−1 and kg = 0.035 W m−1K−1. Again the
two-dimensional simulations use 200 × 200 grids and the
three-dimensional cases use 60 × 60 × 60 grids. This time,
however, the three-dimensional predictions are closer to the
experimental data, while the two-dimensional predictions are
much lower. Although the generated random structures are not
exactly the same as those in Carson’s experiments, which might
lead to possible differences [62], this comparison may still
serve as evidence to show that Carson’s transient comparative
method is a three-dimensional measurement technique.

4. Conclusions

The three-dimensional effect on the effective thermal
conductivity predictions of porous media has been investigated
numerically using a stochastic–statistic based method.

Compared with the two-dimensional results under the same
boundary conditions and parameters, the three-dimensional
predictions show a dependence on both the generated structure
and the cell number in the third dimension. The three-
dimensional predictions increase with the third dimension cell
number by an exponential relationship. The cell number in
the third dimension has to be greater than a certain value
to eliminate the influence and the predicted effective thermal
conductivity then becomes independent of the cell number in
the third dimension.

For given porosities, the two-dimensional predicted
effective thermal conductivity is always smaller than the
three-dimensional result unless the porosity equals zero or
unity. The ratio of the two reaches a minimum value at a
certain porosity level. Comparisons between the numerical
predictions and the experimental data show that the hot-
probe and hot-wire based methods are two-dimensional
measurement techniques, whereas the transient comparative
method is more applicable to three-dimensional situations.
The methods and analyses presented in this work can be
generalized for various heterogeneous materials.
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